
Curve-Based Level Generation for a Full-Body VR Rhythm Game

Erin J.K. Truesdell
Georgia Institute of Technology

Atlanta, GA, USA
erinjktruesdell@gatech.edu

Abstract

Due to the large amount of content authoring required to
produce levels for rhythm games, procedural content gener-
ation provides an attractive alternative for generating levels
in large numbers. Frequently, however, level generators for
rhythm games rely only on a “difficulty” measure to describe
desired level properties. This work presents level generation
tool for BEAMS, a full-body virtual reality rhythm game.
The BEAMS level generator allows designers to shape curves
describing four characteristics of the obstacles needed for a
game in which the primary interaction involves the human
body in three-dimensional space.

Introduction
In recent years, virtual reality games (including Beat Saber
and HoloDance) have emerged that combine body move-
ment and rhythmic coordination, drawing on previous works
such as Just Dance and Dance Dance Revolution and taking
advantage of advancements in consumer game control tech-
nology. BEAMS is a virtual reality rhythm game that uses
a wireless motion capture suit to engage the player’s full
body as its controller. Drawing inspiration from scenes in
heist movies such as Ocean’s Twelve and arcade laser mazes,
BEAMS times laser-shaped obstacles to the beat of music,
asking its players to dodge oncoming laser beams as though
they are moving through a maze. Unlike contemporary com-
mercial motion platforms, the controller for BEAMS is ca-
pable of reading the motion of the human body in three di-
mensions, thus offering enhanced levels of avatar control.
BEAMS seeks to combine this high level of fidelity with vir-
tual reality space to create an immersive rhythm experience.
A level generator application has been developed specifi-
cally for BEAMS with the goal of generating a large number
of levels for the game without requiring prohibitive amounts
of hand-authoring.

Related Work
The challenges of authoring levels for rhythm games is
well-documented. A number of tools have been developed
to aid in level creation for designers seeking the ability

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: BEAMS gameplay.

to quickly generate large numbers of levels as well as ca-
sual creators who may not have the design expertise needed
to craft a level from scratch. Level generation strategies
for two-dimensional platformers often generate levels based
upon specific elements of gameplay, such as the rhythm of
a player’s movement through a level (Smith et al. 2009) or
play styles (Summerville et al. 2016). Approaches to rhythm
game level generation have leveraged techniques including
the use of neural networks (Donahue, Lipton, and McAuley
2017; Tsujino and Yamanishi 2018) and selection from a set
of prerecorded moves (Martin et al. 2019). These approaches
typically limit designer input to a “difficulty” parameter.

Such approaches work well for games in which there are a
limited number of discrete inputs (such as controller buttons
or a Dance Dance Revolution pad). However, projects such
as BEAMS that focus on continuous interactions in three-
dimensional space require additional measures of control.
“Difficulty” in such a project may take many forms, and
is difficult to describe with a single value. For this reason,
the BEAMS level generator includes four curves describing
properties of level components over time, affording greater
designer control over the level attributes.

Level Generator
The BEAMS level generator creates a level by reading in and
analyzing a .wav file and using information from four user-
defined curves describing desired properties of the obstacles.



Curve Definition

The BEAMS Level Generator affords the definition of four
curves, each describing the desired characteristics of lasers
spawned over the course of the level. The curve’s x-axis de-
scribes time, where 0.0 is the beginning of the song and 1.0
is the end. The Y-values of curve points describe the desired
value for each characteristic at the corresponding time point
in the song.

“Height” and “left/right position” curves describe the
placement of the centers of the laser obstacles relative to the
player. Two transverseness curves control the angle at which
the laser obstacle is spawned. An up/down transverseness
value of 0.0 will lead to selected lasers that are highly hori-
zontal; a value of 1.0 will generate portions of a level where
lasers approach vertical. Figure 2 illustrates laser obstacles
exhibiting high and low values for each characteristic. The

Figure 2: The four values described by curves in the BEAMS
level generator.

Level Generator interface allows users to edit the curves be-
fore the level is generated. Users may insert, remove, and
manipulate points on the curve to describe the desired prop-
erties of spawned obstacles from the level’s beginning to its
end. This interface, within which a left/right position curve
is being edited, is depicted in Figure 3.

Figure 3: The Level Generator interface, featuring a left-
right position curve that varies over the course of the level.

Beat Detection
While many rhythm game level generators use more ad-
vanced technology to analyze music for levels, BEAMS
applies a simpler approach that is augmented by the de-
signer’s control over level properties. Before a BEAMS level
is generated, analysis is performed on the loaded sound file
to determine where in the music laser obstacles should be
spawned. This relies on the ability of the system to identify
both the tempo of the music uploaded, as well as its ability to
identify local peaks where laser obstacles may be spawned
“on the beat.” Pre-analysis of the loaded sound file reduces
the information in the original file to a single channel, and
further reduces it down to 50 samples per second by averag-
ing the sample values for each 1/50 second step. The level
generator uses this reduced sample set to detect local peaks
in the music, and determine which peaks will be matched
to the introduction of an obstacle to the player’s space. A
modifiable “difficulty” parameter allows users to specify the
maximum number of lasers occurring for each 1000 sam-
ples in the song, and thus provides a means of adjusting the
density of obstacles in the level.

Laser Candidate Generation and Selection
Laser obstacles are generated for each moment in the level
where they must occur; for each moment where a laser is re-
quired, the generator produces 35 candidate lasers with ran-
dom heights, left-right positions, and rotation values. Each
candidate is assigned a cumulative score reflecting its close-
ness to or distance from the characteristics specified by the
curve at that point in the level. Closeness to a curve-specified
value corresponds to a lower component score for that char-
acteristic. All four component scores are weighted equally.
The candidate with the lowest cumulative score is selected
for inclusion in the level, which is stored as a single text
string comprising 0s and parenthetical information contain-
ing positional and rotational data about the laser obstacles in
the level. The level information is then able to be exported
for use in the main BEAMS game, where a level reader
parses the exported value and uses the information to gen-
erate laser obstacles during play.

Discussion
Early use of the BEAMS Level generator have produced
playable BEAMS levels whose properties reflect the de-
signer’s input curves. Future work on this project will inves-
tigate human players’ experience playing BEAMS, and will
be used to evaluate the effects of various curve properties on
player experience and perception of difficulty. Additionally,
a significant limitation of BEAMS is its reliance on hard-
ware that is not intended for consumer use; future iterations
of this project, and by extension, this level generator, may
take into account a version of BEAMS that can be played on
consumer hardware, and will include level generation strate-
gies to reflect this alternate control scheme.

References
Donahue, C.; Lipton, Z. C.; and McAuley, J. 2017. Dance
Dance Convolution. In Precup, D.; and Teh, Y. W., eds., Pro-



ceedings of the 34th International Conference on Machine
Learning, volume 70 of Proceedings of Machine Learning
Research, 1039–1048. PMLR. URL http://proceedings.mlr.
press/v70/donahue17a.html.
Martin, A.; Farines, J.; Paliyawan, P.; and Thawonmas,
R. 2019. Dancing ICE: A Rhythm Game to Control
the Amount of Movement Through Pre-Recorded Healthy
Moves. In Motion, Interaction and Games, MIG ’19.
New York, NY, USA: Association for Computing Machin-
ery. ISBN 9781450369947. doi:10.1145/3359566.3364691.
URL https://doi.org/10.1145/3359566.3364691.
Smith, G.; Treanor, M.; Whitehead, J.; and Mateas, M. 2009.
Rhythm-Based Level Generation for 2D Platformers. In
Proceedings of the 4th International Conference on Foun-
dations of Digital Games, FDG ’09, 175–182. New York,
NY, USA: Association for Computing Machinery. ISBN
9781605584379. doi:10.1145/1536513.1536548. URL
https://doi.org/10.1145/1536513.1536548.
Summerville, A.; Guzdial, M.; Mateas, M.; and Riedl, M.
2016. Learning Player Tailored Content From Observa-
tion: Platformer Level Generation from Video Traces us-
ing LSTMs. Proceedings of the AAAI Conference on Ar-
tificial Intelligence and Interactive Digital Entertainment
12(1). URL https://ojs.aaai.org/index.php/AIIDE/article/
view/12895.
Tsujino, Y.; and Yamanishi, R. 2018. Dance Dance Grada-
tion: A Generation of Fine-Tuned Dance Charts. In Clua,
E.; Roque, L.; Lugmayr, A.; and Tuomi, P., eds., Entertain-
ment Computing – ICEC 2018, 175–187. Cham: Springer
International Publishing. ISBN 978-3-319-99426-0.


